Infantile hemangioma: which are the main risk factors?

Hemangioma infantil: quais são os principais fatores de risco?

Mariana Aparecida Pasa Morgan1,2, Laura Serpa2, Beatriz Carvalho1, Alice Andrade Gonçalves1, Thaís Braga Cerqueira1, Aluhine Lopes Fatturi1,2, Rafaela Moura de Oliveira1,2, Vânia Oliveira de Carvalho1, Kerstin Taniguch Abagge1

ABSTRACT

Introduction: Infantile hemangioma (IH) is a benign tumor of the vascular endothelium, characterized by early appearance, rapid growth, and slow involution. It is the most common tumor in the pediatric age group, and several risk factors are associated with its development. Case Report: Monozygotic twins, female, 29 weeks premature and with low birth weight, presenting reddish spots that after 15 days evolved into erythematous tumors, with a diagnosis of IH. Conclusion: This case report exemplifies simultaneously the main risk factors associated with the development of IH. Recognition of these factors by pediatricians is crucial for early diagnosis, appropriate follow-up, and management.

Keywords: Infantile hemangioma; Hemangioma; Vascular tumor; Neonatal; Twins; Probability; Risk factors.
Infantile hemangioma and main risk factors

INTRODUCTION

Infantile hemangioma (IH) is the most common benign vascular tumor of childhood, with a prevalence estimated at 3 to 10% of the population and up to 20% of preterm infants. It may be present at birth as a precursor lesion and is characterized by a rapid proliferation phase, reaching its final volume in the first 3 months of life, followed by slow regression. The mechanisms that favor its emergence and evolution are not completely understood. Hypoxia has already been identified as one of those responsible for its pathogenesis, and recent evidence shows that the renin-angiotensin system can also act synergistically, creating a favorable environment for the emergence of IH. Several risk factors are associated with its development, as will be exemplified in this case report. Knowledge of these risk factors is essential for professionals who provide care to newborns for early diagnosis and appropriate management.

CASE REPORT

Female monozygotic twins, 29 weeks premature and with low birth weight.

Twin A: Newborn, weighing 1160 grams, with reddish spots on the upper eyelids, left inframandibular and inframammary areas, and right heel. After 15 days, the spots progressed into violet plaques, thus confirming the clinical diagnosis of superficial non-segmental infantile hemangioma (IH).

Twin B: Newborn, weighing 970 grams, with reddish spots on the left upper limb, upper back, and right lateral region of the chest. After 15 days, the lesions progressed into plaques and erythematous tumors, corroborating the hypothesis of superficial IH.

Figures 1 and 2 show the lesions in the first outpatient visit, at 4 months of age.

DISCUSSION

IH is a benign tumor that, in up to 65% of cases, presents at birth as a precursor lesion (telangiectasia, anemic spot, or reddish spot). Its incidence rate varies from 3 to 10% in the population but it can reach up to 20% in preterm infants. It is also more frequent in females than in males, at an approximate ratio of 2:3:1. A meta-analysis conducted by Ding et al. (2020) evaluated seventeen potential risk factors for IH and showed that female gender, low birth weight, multiple gestation, premature delivery, progesterone therapy, and family history increased the risk of IH. Low birth weight is one of the most relevant factors, with the risk for IH increasing by 40% for each 500 grams reduction in birth weight.

The relationship between twins remains an uncertain factor in the occurrence of IH. While IH is not transmitted through direct mendelian inheritance, there exists a genetic influence, evidenced by the higher incidence in monozygotic twins compared to dizygotic twins. Multiple pregnancies are associated with a higher risk of prematurity and low birth weight. It is possible that several predisposing factors interact, leading to prematurity, low weight, and female sex appearing to be more influential than a single genetic predisposition, as described in this case report. Moreover, the intrauterine-hypoxia theory, combined with the action of the renin-angiotensin system in IH’s pathogenesis, could account for all these factors.

Recent studies suggest that IHs result from vasculogenesis (the formation of new blood vessels from stem cells) and angiogenesis (the creation of new blood vessels from existing vessels), with hypoxia appearing to trigger this dysregulation.

Hypoxia has been identified as one of the factors responsible for IH’s pathogenesis. Evidence is based on the pallor of IH precursors and possible associated
Figure 1. Ventral view. Twin A: Erythematous patches on the upper eyelid, inframandibular, and inframammary regions on the left side consistent with infantile hemangioma. Twin B: Nodular lesion on the left upper limb and a plaque on the right lateral thoracic region, indicative of infantile hemangioma.

Figure 2. Dorsal view. Twin A: Erythematous plaque on the right heel. Twin B: Erythematous plaque on the upper back. Both consistent with infantile hemangioma.
Infantile hemangioma and main risk factors

Infantile hemangioma and main risk factors

The proposed origin of hemangioma via the placenta is supported by the fact that many molecular markers characteristic of hemangioma vessels are expressed in normal fetal microvessels of the placenta, including the erythrocyte-like glucose transporter-1 (GLUT-1). This suggests that IH likely originates from placental cells. GLUT-1 positive cells have exhibited stem cell properties by demonstrating the ability to differentiate into endothelial, smooth muscle, or adipocyte cells, providing further evidence in support of the theory of vasculogenesis.

It is known that levels of placental proteins, such as human placental lactogen, differ in multiple pregnancies compared to singleton pregnancies. These enzymatic alterations also occur in conditions like preeclampsia, affecting placental growth factor (PIGF) and tyrosine kinase-1 values. PIGF has been discovered to be expressed in involuted hemangiomas, further supporting the idea that hemangiomas and the placenta are governed by similar angiogenic control mechanisms. Further studies are necessary to comprehend the role of these angiogenic growth factors concerning hemangioma and placental vessels.

A case-control study conducted by Gong et al. (2022) analyzed maternal and perinatal risk factors for IH, demonstrating that a history of spontaneous abortion, anemia during pregnancy, premature rupture of membranes, placenta previa, preeclampsia, and abnormal volume of amniotic fluid are independent risk factors for IH.

The patients described in this case had the following risk factors: female gender, low birth weight, multiple pregnancy, and prematurity; all of which have been previously reported in the literature.

The diagnosis of IH relies on clinical evaluation, noting its characteristic evolutionary history marked by rapid growth, reaching approximately 80% of its final volume within the first 3 months of life, followed by a subsequent phase of slow involution at a rate of around 10% per year. In instances of diagnostic uncertainty, positive immunohistochemistry for GLUT-1 aids in distinguishing it from other vascular lesions, telangiectasias, and anemic patches at birth may be the first sign of an IH.

The primary indications for treatment include large lesions, the risk of functional impairment (such as affecting vision, airways, or anogenital areas), aesthetic concerns, and ulcerations, which can have physical and emotional impacts on both children and their families. When systemic treatment is necessary, the non-selective beta-blocker propranolol is the preferred initial choice. Although the twins shared similar risk factors, only twin A required systemic treatment with propranolol at a dosage of 2 mg/kg/day. This was due to lesions located in critical areas, such as the cervical region (posing a risk to the airway and potential for ulceration) and the eyelid region (affecting vision). Twin B received treatment with topical timolol. Both patients commenced treatment after reaching 5 weeks of corrected age, as recommended in the literature.

CONCLUSION

The presence of erythematous patches, telangiectasias, or anemic patches at birth may be the first sign of an IH. It is crucial for pediatricians to consider assessing risk factors such as female gender, low birth weight, multiple gestation, premature birth, progesterone therapy, and family history when diagnosing IH. Guiding parents regarding the observation of the lesion evolution is vital, as the prognosis is significantly influenced by the early introduction of beta-blocker treatment.

AUTHORS’ CONTRIBUTIONS

We describe contributions to the papers using the taxonamy (CRediT) provide above:

- Conceptualization, Investigation, Methodology, Visualization & Writing – review & editing: Mariana Aparecida Pasa Morgan, Laura Serpa, Thaís Braga Cerqueira, Alice Andrade Gonçalves, Beatriz Carvalho, Aluhine Lopes Fatturi, Rafaela Moura de Oliveira.
- Project administration, Supervision & Writing – original draft: Mariana Aparecida Pasa Morgan, Laura Serpa, Thaís Braga Cerqueira.
- Validation & Software: Mariana Aparecida Pasa Morgan, Laura Serpa.
- Data curation & Formal Analysis: Vânia Oliveira de Carvalho, Kerstin Taniguchi Abagge.

COPYRIGHT

Copyright © 2021 Pasa Morgan al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original article is properly cited.

REFERENCES

